A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition
نویسندگان
چکیده
Iron sequestration by host proteins contributes to the defence against bacterial pathogens, which need iron for their metabolism and virulence. A Pseudomonas aeruginosa mutant lacking all three known iron acquisition systems retains the ability to grow in media containing iron chelators, suggesting the presence of additional pathways involved in iron uptake. Here we screen P. aeruginosa mutants defective in growth in iron-depleted media and find that gene PA2374, proximal to the type VI secretion system H3 (H3-T6SS), functions synergistically with known iron acquisition systems. PA2374 (which we have renamed TseF) appears to be secreted by H3-T6SS and is incorporated into outer membrane vesicles (OMVs) by directly interacting with the iron-binding Pseudomonas quinolone signal (PQS), a cell-cell signalling compound. TseF facilitates the delivery of OMV-associated iron to bacterial cells by engaging the Fe(III)-pyochelin receptor FptA and the porin OprF. Our results reveal links between type VI secretion, cell-cell signalling and classic siderophore receptors for iron acquisition in P. aeruginosa.
منابع مشابه
Molecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates
Background: Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient ...
متن کاملCommentary: The icmF3 Locus is Involved in Multiple Adaptation- and Virulence-related Characteristics in Pseudomonas aeruginosa PAO1
A commentary on The icmF3 locus is involved in multiple adaptation-and virulence-related characteristics in Pseudomonas aeruginosa PAO1 Pseudomonas aeruginosa is an important pathogen commonly isolated from patients with burns, wounds and cystic fibrosis (Lyczak et al., 2000; Gellatly and Hancock, 2013). The P. aeruginosa strain PAO1 was originally reported as a wound isolate from a patient in ...
متن کاملInterspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms
Microbes interact with each other in multicellular communities and this interaction enables certain microorganisms to survive in various environments. Pseudomonas aeruginosa is a highly adaptable bacterium that ubiquitously inhabits diverse environments including soil, marine habitats, plants and animals. Behind this adaptivity, P. aeruginosa has abilities not only to outcompete others but also...
متن کاملRole of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation.
Gram-negative bacteria produce outer membrane vesicles (OMVs) that package and deliver proteins, small molecules, and DNA to prokaryotic and eukaryotic cells. The molecular details of OMV biogenesis have not been fully elucidated, but peptidoglycan-associated outer membrane proteins that tether the outer membrane to the underlying peptidoglycan have been shown to be critical for OMV formation i...
متن کاملMembrane Distribution of the Pseudomonas Quinolone Signal Modulates Outer Membrane Vesicle Production in Pseudomonas aeruginosa
The Pseudomonas quinolone signal (PQS) is an important quorum-sensing molecule in Pseudomonas aeruginosa that also mediates its own packaging and transport by stimulating outer membrane vesicle (OMV) formation. Because OMVs have been implicated in many virulence-associated behaviors, it is critical that we understand how they are formed. Our group proposed the bilayer-couple model for OMV bioge...
متن کامل